Self-assembly of cyclodextrins and their complexes in aqueous solutions


Cyclodextrins (CDs) are enabling pharmaceutical excipients that can be found in numerous pharmaceutical products worldwide. Because of their favorable toxicologic profiles, CDs are often used in toxicologic and phase I assessments of new drug candidates. However, at relatively high concentrations, CDs can spontaneously self-assemble to form visible microparticles in aqueous mediums and formation of such visible particles may cause product rejections. Formation of subvisible CD aggregates are also known to affect analytical results during product development. How and why these CD aggregates form is largely unknown, and factors contributing to their formation are still not elucidated. The physiochemical properties of CDs are very different from simple amphiphiles and lipophilic molecules that are known to self-assemble and form aggregates in aqueous solutions but very similar to those of linear oligosaccharides. In general, negligible amounts of aggregates are formed in pure CD solutions, but the aggregate formation is greatly enhanced on inclusion complex formation, and the extent of aggregation increases with increasing CD concentration. The diameter of the aggregates formed is frequently less than about 300 nm, but visible aggregates can also be formed under certain conditions.